Assessing the correlation between mutant rhodopsin stability and the severity of retinitis pigmentosa
نویسندگان
چکیده
PURPOSE Following a previous study that demonstrated a correlation between rhodopsin stability and the severity of retinitis pigmentosa (RP), we investigated whether predictions of severity can be improved with a regional analysis of this correlation. The association between changes to the stability of the protein and the relative amount of rhodopsin reaching the plasma membrane was assessed. METHODS Crystallography-based estimations of mutant rhodopsin stability were compared with descriptions in the scientific literature of the visual function of mutation carriers to determine the extent of associations between rhodopsin stability and clinical phenotype. To test the findings of this analysis, three residues of a green fluorescent protein (GFP) tagged rhodopsin plasmid were targeted with site-directed random mutagenesis to generate mutant variants with a range of stability changes. These plasmids were transfected into HEK-293 cells, and then flow cytometry was used to measure rhodopsin on the cells' plasma membrane. The GFP signal was used to measure the ratio between this membrane-bound rhodopsin and total cellular rhodopsin. FoldX stability predictions were then compared with the surface staining data and clinical data from the database to characterize the relationship between rhodopsin stability, the severity of RP, and the expression of rhodopsin at the cell surface. RESULTS There was a strong linear correlation between the scale of the destabilization of mutant variants and the severity of retinal disease. A correlation was also seen in vitro between stability and the amount of rhodopsin at the plasma membrane. Rhodopsin is drastically reduced on the surface of cells transfected with variants that differ in their inherent stability from the wild-type by more than 2 kcal/mol. Below this threshold, surface levels are closer to those of the wild-type. CONCLUSIONS There is a correlation between the stability of rhodopsin mutations and disease severity and levels of membrane-bound rhodopsin. Measuring membrane-bound rhodopsin with flow cytometry could improve prognoses for poorly characterized mutations and could provide a platform for measuring the effectiveness of treatments.
منابع مشابه
Thermal stability of rhodopsin and progression of retinitis pigmentosa: comparison of S186W and D190N rhodopsin mutants.
Over 100 point mutations in the rhodopsin gene have been associated with retinitis pigmentosa (RP), a family of inherited visual disorders. Among these, we focused on characterizing the S186W mutation. We compared the thermal properties of the S186W mutant with another RP-causing mutant, D190N, and with WT rhodopsin. To assess thermal stability, we measured the rate of two thermal reactions con...
متن کاملRetinitis pigmentosa associated with rhodopsin mutations: Correlation between phenotypic variability and molecular effects
Similar retinitis pigmentosa (RP) phenotypes can result from mutations affecting different rhodopsin regions, and distinct amino acid substitutions can cause different RP severity and progression rates. Specifically, both the R135L and R135W mutations (cytoplasmic end of H3) result in diffuse, severe disease (class A), but R135W causes more severe and more rapidly progressive RP than R135L. The...
متن کاملPhospholipid Bicelles Improve the Conformational Stability of Rhodopsin Mutants Associated with Retinitis Pigmentosa.
Mutations in the visual photoreceptor rhodopsin are the cause of the retinal degenerative disease retinitis pigmentosa. Some naturally occurring mutations can lead to protein conformational instability. Two such mutations, N55K and G90V, in the first and second transmembrane helices of the receptor, have been associated with sector and classical retinitis pigmentosa, respectively, and showed en...
متن کاملModel of Abnormal Chromophore-Protein Interaction for Е181К Rhodopsin Mutation: Computer Molecular Dynamics Study
The interaction of the 11-cis-retinal chromophore with the surrounding amino acid residues in the chromophore center of the rhodopsin protein has been investigated for the Е181К mutant form using molecular dynamics simulation. A comparative analysis of the arrangement of the amino acid residues in the chromophore center has been performed for both wild (native) and mutant rhodopsins. It is show...
متن کاملCrystal structure of a thermally stable rhodopsin mutant.
We determined the structure of the rhodopsin mutant N2C/D282C expressed in mammalian cells; the first structure of a recombinantly produced G protein-coupled receptor (GPCR). The mutant was designed to form a disulfide bond between the N terminus and loop E3, which allows handling of opsin in detergent solution and increases thermal stability of rhodopsin by 10 deg.C. It allowed us to crystalli...
متن کامل